Journal 1: COVID-19 Vaccines In Development

BMES Cell Team Fall 2020

Outline

- Introduction to Reading Scientific Articles
 - · Purpose of a Scientific Paper
 - Dr. Meyer's Recommended Reading & Writing Order
- Background on SARS-CoV-2
- Vaccine Development Process
- Article Background
- Discussion Questions
 - Breakout Rooms

Introduction to Reading Scientific Articles

BMES Cell Team

Fall 2020

Material is largely based on Dr. Meyer's Recommendations

Purpose of a Scientific Paper

A scientific paper communicates what you have done to other scientists.

Allows other researchers to:

- → accurately replicate your experiments
- → use conclusions from your research as a basis for future experimentation

Written Order of a Paper vs. Reading Order of a Paper

The title concisely explains the information provided by the article.

Current Opinion in Microbiology Volume 52, December 2019, Pages 55-63

Fantastic yeasts and where to find them: the hidden diversity of dimorphic fungal pathogens

Marley C Caballero Van Dyke 1, Marcus M Teixeira 1, 2, Bridget M Barker 1 ™

Review > Neuro Oncol, 2018 Feb 19:20(3):313-323, doi: 10.1093/neuonc/nox106.

miR miR on the wall, who's the most malignant medulloblastoma miR of them all?

Xin Wang ^{1, 2}, Borja L Holgado ¹, Vijay Ramaswamy ^{1, 3}, Stephen Mack ¹, Kory Zayne ¹, Marc Remke ⁸, Xiaochong Wu ¹, Livia Garzia ¹, Craig Daniels ¹, Anna M Kenney ^{1, 5, 6}, Michael D Taylor ^{1, 2, 7}

Actin' like actin?

R D Mullins 1, J F Kelleher, T D Pollard

Human Microbiome Journal Volume 13, August 2019, 100058

er to the Editor

The effect of having Christmas dinner with inlaws on gut microbiota composition

Nicolien C. de Clercq * R. 🗷, Myrthe N. Frissen * 🗷, Evgeni Levin * b 🗷, Mark Davids * 🗷, Jorn Hartman * 🗷, Andrei Prodan * b 🗷, Hilde Herrema * 🗷, Albert K. Groen * c 🗷, Johannes A. Romijn * 🗷, Max Nieuwdorp ^{d. c} 🖾

Understanding the Dynamics of Emerging and Re-Emerging Infectious Diseases Using Mathematical Models, 2012: 157-177 ISBN: 978-81-7895-549-0 Editors: Steady Mushayabasa and Claver P. Bhunu

7. A mathematical model of Bieber Fever: The most infectious disease of our time?

Valerie Tweedle¹ and Robert J. Smith?²
¹Department of Biology, The University of Ottawa, 585 King Edward Ave, Ottawa ON KIN 6N5

Canada; ¹Department of Mathematics and Faculty of Medicine, The University of Ottawa 585 King Edward Ave, Ottawa ON KIN 6N5, Canada

Snakes on a Spaceship—An Overview of Python in Heliophysics

A. G. Burrell 🕿, A. Halford, J. Klenzing, R. A. Stoneback, S. K. Morley, A. M. Annex, K. M. Laundal, A. C. Kellerman, D. Stansby, J. Ma

Abstract

The abstract provides a brief overview of every section of the paper.

- Roughly 5-6 sentences long
 - · Contains about a sentence for each section of the paper
 - Emphasizes novel / important research findings
 - · Convinces audience to read the paper

- Read the abstract first
- Write the abstract last

Introduction

The introduction provides background information on the research topic and explains the researcher's motivation for their experiments.

- · Background information
 - First, explains general, textbook-level information on the topic
 - Then, delves into more specific research conducted by peers
 - Ends with precise focus of this paper
 - · Setup for results section
- Read the introduction second
- Write the introduction with the discussion

Discussion

The discussion synthesizes the results of the paper.

- Places results in a broader context and interprets experimental findings
 - First, explains the findings of independent research
 - Then, links these findings to general understanding of the topic
 - Specifies areas of focus and next steps for future research
- Read the discussion third
- Write the discussion as you write the introduction
 - If there is a conclusion, read it after reading the discussion and write it with the introduction

Figures (Part of Results)

The figures visually depict what was done in the experiment.

- Three main types of figures in bioengineering papers:
 - Cartoon depictions of the procedure
 - Pictures of the experimental setup, colorimetric assays, and microscope images
 - · Graphs synthesizing quantitative data
- Examine the figures before you read the results section
- Make the figures second to last (with the rest of the results section)

Example of Figure Types: Engler Paper

Matrix Elasticity Directs Stem Cell Lineage Specification

Figure 1. Tissue Elasticity and Differentiation of Native MSCs

Rest of Results

The results communicate important experimental findings.

- Guide the reader through the experiments
- List important quantitative and qualitative findings
- Broken into sections that are interwoven with the appropriate figures
- Experimental findings are not interpreted in the results section

- Read the results second to last
- Write the results second

Experimental Materials and Methods

Materials and methods provide instructions for experimental replication.

- Most technical section of the paper
- Typically broken down into distinct experiments
 - Ex: Dr. Meyer's AXL Receptor Article in Cell Systems
 - Preparation, Quantification, Transfection,
 Immunofluorescence, Modeling, Calculations

- Read the materials and methods last
- · Write the materials and methods first

Everything Else

Authors

- Lists major contributors to experimental design and execution
- The primary researchers are listed first
- The principle investigator (PI) is listed last
- An asterisk * marks contact person for inquires about the article

Acknowledgments

Acknowledgements

Specifies sources of funding

"Thanks to the Grant Funding Agency for supporting this work. This work was supported under grant N00014-98-7994."

What you write:

- What you actually want to sav: "None of the money was actually used for this paper but we needed to say this in order
- government grants, private companies, non-profits
- Lists consultants, advisors, and material contributors
- Everyone that helped make the project happen should be acknowledged for their contribution

Research is spending 6 hours reading 35 papers, so you can write one sentence containing 2 references.

References

· Useful when researching a specific topic discussed in the paper

Background: SARS-CoV-2

BMES Cell Team

Fall 2020

Material is largely based on Dr. Niemz's KGI Presentation

Human History with Coronavirus

- MERS-CoV (2012)
 - Killed ~34.4% infected
 - 881 deaths worldwide (September 2012 November 2019)
- SARS-CoV-2 (2019)
 - According to the CDC, 216,459 in the US alone (Feb Nov 2020)

Early Timeline of SARS-CoV-2

Structure of SARS-CoV-2

- Large, single-stranded RNA virus
 - Positive-sense (~mRNA)
 - Enveloped (protection)
- Origin of the name
 - "Corona" (halo) shape under EM
 - Shape comes from envelope spikes
- Coronavirus Genome
 - ~30,000 nucleotides (large!)
 - 4 structural proteins:

Nucleocapsid (N)

Membrane (M)

Envelope (E)

Spike (S)

- Spike Protein
 - Receptor Binding
 - Membrane Fusion
 - Antibody Target

RNA viruses

SARS-CoV-2 vs. COVID-19 & Disease Progression

 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the <u>virus</u> that causes coronavirus <u>disease</u> 2019 (COVID-19)

- Vaccines target SARS-CoV-2 to prevent COVID-19
 - SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2)
 - After binding, SARS-CoV-2 is endocytosed and can replicate
- COVID-19's mechanism of action is currently being investigated
 - Associated with a "cytokine storm"
 - One current idea: Dysregulation of RAAS

Testing for SARS-CoV-2

Two main testing methods: Nucleic-Acid Based and Antibody Based

Nucleic-Acid Based

- Respiratory specimen
- **Detects viral RNA**
- Active infection
- Used for diagnosis

Molecular Tests (Nucleic Acid Detection)

Diagnose active SARS-CoV-2 infections

specimen and convert to DNA.

SARS-CoV-2 specific primers.

4. Interpret results: presence of viral RNA indicates active SARS-CoV-2 infection.

Antibody Based

- **Blood sample**
- Detects IgM & IgG
- Produced 1-2 weeks after infection
- Not currently used for diagnosis, but can indicate exposure to viral RNA

Antibody Tests (Serology)

Detect immune response to SARS-CoV-2 exposure

Obtain Specimen: Blood Sample

SARS-CoV-2 specific antigens.

Interpret results: color change indicates previous exposure to SARS-CoV-2

Background: The Vaccine Development Process

BMES Cell Team Fall 2020

Normal Vaccine Development

- Vaccine development is a VERY long process
 - 10-15 years from discovery to market availability
 - Fastest known vaccine development timeline was still ~4 years
- Why does vaccine development take so long?
 - The sponsors of a vaccine need to demonstrate the long-term safety and efficacy of their product
 - Years of preclinical animal studies and clinical trials
 - Regulatory agencies require the submission of documentation
 - Investigational New Drug (IND) Application before trials

Traditional development

Biologics License Application (BLA) from FDA (CBER)

15 years or longer

SARS-CoV-2 Accelerated Vaccine Development Timeline

- Leveraging existing preclinical research on SARS-CoV-2 and MERS-CoV
 - ~20 years of research since the first SARS-CoV outbreak
 - · Improved ability to isolate viruses and decode genomes
- FDA expedited processes for biotechnology tackling the SARS-CoV-2 virus
 - Emergency Use Authorization (EUA)
 - Approval granted for simultaneous vaccine development from many different companies with overlapping clinical trail phases

SARS-CoV-2 vaccine development

Journal 1: SARS-CoV-2 Vaccines in Development

BMES Cell Team Fall 2020

Article Overview

- Review article published September 23, 2020 in Nature
 - Synthesizes research conducted by vaccine sponsors
- Author Information: Florian Krammer
 - Professor of Vaccinology in the Microbiology Department of Icahn School of Medicine at Mount Sinai (NYC)
 - PI of SEM-CIVIC (focuses on improving flu vaccines)
 - Krammer laboratory is an NIH-funded CEIRS
- Review Structure
 - Overview on SARS-CoV-2 history and its known mechanisms
 - Types of SARS-CoV-2 vaccines in development
 - Results from preclinical (NHP) and clinical trials

Discussion Questions

- What was your main takeaway from this review article?
- What are the advantages and disadvantages of the different types of vaccines in development (inactivated vs. live-attenuated, etc.)?
- Examine Figure 4. What do you notice about the distribution of vaccine candidates? Discuss both the vaccine type and trial stage.
- What conclusion does Krammer reach on the outlook of a SARS-CoV2 vaccine? What evidence does Krammer use to support this
 conclusion? What case would a skeptical scientist make against
 Krammer's conclusion? Based on this article, provided background
 information, and your personal experience, what is your assessment
 of this conclusion?

https://uvic470ecology.weebly.com/uploads/1/2/4/4/12445281/470 howtoleaddiscussion.pdf